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Abstract

The Blankert Operator is introduced as a novel mathematical measure designed to bridge
classical mathematical frameworks and modern AI-driven methodologies. It provides a flexible
similarity metric that is sensitive to nonlinear interactions between functions, thus filling gaps
left by classical inner products and correlation measures. We formally define the operator and
explore its mathematical properties, then offer an intuitive explanation accessible to a broad
audience. We compare the Blankert Operator to classical operators like standard inner prod-
ucts and convolution, highlighting its unique ability to capture subtle differences. We further
outline practical applications in finance, physics, and artificial intelligence to demonstrate its
broad relevance and utility. A computational implementation guide is provided, alongside a
case study in financial time-series forecasting. Finally, we discuss future research directions,
including generalizations to higher dimensions and theoretical analysis, before concluding on
the significance of this operator as a tool for future interdisciplinary research.

Note: The Blankert Operator, introduced herein, was invented by the author, J. Philippe Blankert.
Detailed documentation and original reference can be found at DOI: 10.5281/zenodo.15423471

1 Introduction

The rapid advancement of artificial intelligence (AI) and machine learning has exposed limita-

tions in classical mathematical tools, particularly in capturing nonlinear interactions in complex

data. Traditional measures of similarity and correlation, such as the standard inner product (cosine

similarity) or convolution-based correlations, often fail to reflect subtle yet critical nonlinear rela-

tionships. For instance, Pearson’s correlation may register near zero for two variables with a strong

nonlinear (but non-monotonic) relationship, and convolution filters can overlook fine differences in

signal patterns. These shortcomings limit our ability to model and analyze complex systems where

small discrepancies can have significant effects.

The Blankert Operator is proposed to overcome these limitations by providing a nuanced, flexible,

and robust tool for evaluating functional similarities even in the presence of nonlinear effects. In
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essence, the Blankert Operator augments the classical inner product with a nonlinear weighting

factor, acting as a lens that can either amplify subtle differences or downplay minor discrepancies.

This operator is part of a broader paradigm of AI-Generative Mathematics aiming to develop

mathematical structures that adapt to AI and data science needs. By tuning a parameter, this

measure can interpolate between classical linear similarity (recovering the inner product as a special

case) and a highly sensitive detector of differences.

In this article, we present a comprehensive study of the Blankert Operator. Section 2 provides the

formal definition and mathematical foundations, establishing the notation and basic properties. In

Section 3, we offer an intuitive explanation of how the operator works and why it captures aspects

that classical measures might miss. Section 4 compares the Blankert Operator with classical op-

erators (such as standard inner products and other similarity measures) to highlight the novelty

and advantages of the approach. Practical implications are discussed in Section 5, where we delve

into applications across finance, physics, and artificial intelligence, drawing on examples from each

domain to illustrate the operator’s utility. Section 6 outlines guidelines for computational imple-

mentation, ensuring that readers can apply the operator in numerical experiments or real-world data

processing. In Section 7, we demonstrate a case study in financial time-series forecasting, including

visual comparisons of performance using the Blankert Operator versus traditional correlation-based

methods. We then suggest future research directions in Section 8, such as multi-dimensional gen-

eralizations and theoretical analyses of the operator’s properties. Finally, Section 9 concludes the

paper by summarizing the key contributions and the potential impact of the Blankert Operator on

both theory and practice.

2 Formal Definition and Mathematical Foundations

Let f(x) and g(x) be real-valued, square-integrable functions defined on a closed interval [a, b] ⊂ R.

We denote their L2-norms as ∥f∥2 =
√∫ b

a
f(x)2dx and ∥g∥2 =

√∫ b

a
g(x)2dx, assuming f and g are

not identically zero. The Blankert Operator is defined with the introduction of a real parameter

α ∈ R that controls nonlinear sensitivity. Formally, we define the Blankert Operator Bα acting on

f and g as:

Bα(f, g) =

∫ b

a
f(x)g(x) exp

(
α[f(x)− g(x)]2

)
dx

∥f∥2∥g∥2

This formula produces a normalized similarity measure between f and g that generalizes the clas-

sical inner product (or cosine similarity) by the exponential weighting factor exp
(
α[f(x)− g(x)]2

)
.

Several foundational observations can be made from Definition (1):
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• Recovery of classical inner product for α = 0: Setting α = 0 yields B0(f, g) =
∫ b
a
f(x)g(x)dx

∥f∥2∥g∥2
,

which is the standard normalized inner product of f and g. This is essentially the cosine

of the angle between the two functions in the L2 function space, equivalent to the Pearson

correlation coefficient if f and g are first mean-adjusted. Thus, the Blankert Operator is a

true generalization that includes the classical similarity measure as a special case.

• Nonlinearity and tunable sensitivity: For α ̸= 0, the integrand is modulated by exp
(
α[f(x)− g(x)]2

)
,

which is a strictly positive weighting function. This weight depends on the pointwise squared

difference (f(x)−g(x))2. If α > 0, regions where |f(x)−g(x)| is large (i.e. where the functions
differ significantly) receive a larger weight (since exp

(
α[f − g]2

)
> 1 in those regions), mag-

nifying the impact of discrepancies on the overall value. Conversely, if α < 0, large differences

yield a weight exp
(
α[f − g]2

)
< 1, thereby down-weighting regions of disparity and empha-

sizing regions where f and g are similar. The parameter α thus serves as a dial to adjust the

operator’s sensitivity to differences: higher positive α means more penalty for disagreement

between f and g, while negative α can be used to ignore minor differences (treating them as

noise) and focus on coarse similarity.

• Symmetry and alignment properties: The operator is symmetric in its arguments: by in-

spection of (1), swapping f and g leaves the numerator unchanged since [f(x) − g(x)]2 =

[g(x) − f(x)]2. Thus Bα(f, g) = Bα(g, f) for all α. Moreover, Bα(f, f) = 1 for any α,

since f(x)g(x) = f(x)2 when g = f , and [f(x) − f(x)]2 = 0 makes the exponential weight

exp(0) = 1, yielding
∫
f(x)2dx in both numerator and (normalized) denominator. This means

the measure is self-consistent: any function compared with itself yields the maximal similarity

score of 1, as expected.

• Deviation from linearity: It is important to note that for α ̸= 0, Bα(f, g) is not bilinear in f

and g due to the presence of f and g inside the nonlinear exponential. Unlike the classical

inner product, one cannot generally factor Bα(f, g) into a form ⟨ϕα(f), ϕα(g)⟩ with a fixed

feature mapping ϕα independent of both f and g. In other words, the Blankert Operator does

not correspond to a fixed pre-defined kernel on the input space in the usual sense, because

the weighting factor is determined by the pair of functions in a coupled way. Despite this, for

each fixed α the operator still defines a symmetric similarity measure that in practice behaves

like an ”inner product with memory” of the pair’s pointwise differences.

• Range of values: Because of the normalization by ∥f∥∥g∥, if α = 0 the value B0(f, g) ranges

between -1 and 1 (inclusive), identical to the range of the cosine similarity or correlation

coefficient (with 1 indicating perfect linear alignment, 0 indicating orthogonality, and -1 in-

dicating exact opposites for functions that can take positive or negative values). For α ̸= 0,

this bounded range no longer strictly holds. In particular, for α > 0, the weighting can
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amplify aligned or anti-aligned regions and potentially yield |Bα(f, g)| > 1. For example, if

g(x) = cf(x) for some constant c > 1, then f and g are perfectly linearly related (which would

give B0(f, g) = 1 after normalization), but for α > 0, the difference f(x)− g(x) = (1− c)f(x)

makes exp (α[f− g]2
)
greater than 1 wherever f(x) ̸= 0, boosting the numerator. In such a

case Bα(f, g) will be greater than 1, reflecting that g has consistently larger magnitude than f

across the domain. Conversely, if g(x) = −f(x) (perfectly opposite functions), B0(f, g) = −1,

but for α > 0, the large pointwise differences f(x)−(−f(x)) = 2f(x) are heavily up-weighted,

causing Bα(f, g) to be even more negative (less than -1). For α < 0, the opposite effect oc-

curs: the measure Bα tends to push values toward 1 by diminishing the contribution of any

domain regions where f and g differ. In the extreme limit α → −∞, one can intuit that

exp
(
α[f − g]2

)
acts like an indicator function that is nearly zero wherever f ̸= g, effectively

forcing the numerator to integrate only over the subset of [a, b] where f(x) = g(x). In such

a limit, Bα(f, g) approaches 1 if f and g agree almost everywhere (despite small differences),

or 0 if they differ on any set of non-zero measure (since those differences are penalized so

strongly that they contribute virtually nothing to the weighted integral). Thus, depending

on α, the Blankert similarity can span a wider range and capture distinctions that a linear

measure would either suppress or consider impossible (such as a similarity score below -1 or

above 1 for sufficiently nonlinear weighting).

The above properties highlight how the Blankert Operator forms a oneparameter family of similarity

measures, continuously deforming the classical inner product into a nonlinear metric. This family

includes at one extreme the familiar linear comparison and at the other extreme a regime that can

exaggerate differences or similarities based on the sign of α. In statistical terms, one may view

Bα(f, g) as a correlation-like measure that is sensitive to higher-order moments of the difference

between f and g, not just their first-order covariance. Indeed, expanding the exponential weight as

a power series: exp
(
α[f(x)− g(x)]2

)
= 1+α[f(x)−g(x)]2+ α2

2! [f(x)−g(x)]
4+ α3

3! [f(x)−g(x)]
6+· · · ,

and substituting into (1), we can interpret Bα(f, g) as the normalized inner product
∫ b

a
fg plus

corrections involving all even powered moments of (f − g). For small |α|, Bα(f, g) can be seen

as B0(f, g) plus a small adjustment term ≈ α
∫
f(x)g(x)[f(x)−g(x)]2dx∫

f∥∥g∥ , and higher-order terms if α is

larger. This reinforces that Bα accounts for nonlinear discrepancies between f and g that would not

influence the classical inner product. In summary, the Blankert Operator provides a mathematically

grounded yet flexible foundation for measuring similarity, parameterized by α to suit the level of

nonlinear sensitivity desired.
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3 Intuitive Explanation

While the formal definition above is mathematically precise, it is helpful to build an intuitive

understanding of what the Blankert Operator does and why it is useful. In simple terms, think of

Bα(f, g) as a smart similarity measure for functions or datasets represented by f and g. It starts

with the familiar idea of overlapping f and g (multiplying them pointwise and integrating, as in a

dot product) but adds a twist: it keeps an eye on how different f and g are at each point x and

adjusts the importance of that point accordingly.

Consider a concrete analogy: imagine f(x) and g(x) represent two signals or time-series (for ex-

ample, two stock price trajectories or two sensor readings over time). The classical inner product

essentially measures the overall alignment of these two signals, treating every time point equally. If

f and g are generally similar except for a brief moment where they diverge (say, g has a sudden spike

or drop that f does not), the inner product-especially when normalized-might still report them as

highly similar, because that one brief difference doesn’t dramatically affect the whole integral. In

many situations, however, that brief divergence could be crucial (it might represent a market crash

in finance or a critical anomaly in a sensor reading). We would like a similarity measure that can

flag this difference more strongly when needed. The Blankert Operator addresses this by using the

parameter α as a knob to control how much extra attention (weight) to give to points where f and

g differ.

For α > 0, whenever f(x) and g(x) are far apart, the exponential factor exp
(
α |f − g|2

)
becomes

large, telling the operator ”this part of the domain is very different-emphasize this!”. The product

f(x)g(x) at those differing points will contribute more (whether positively or negatively) to the

overall similarity score. In effect, Bα with α > 0 is quick to penalize f and g for any lack of

agreement: even if they are similar 99% of the time, the 1% where they diverge can significantly

pull down Bα(f, g), alerting us to a potential issue. This makes Bα a very sensitive alarm for

differences. If f and g are almost identical, Bα will be near 1, but the moment differences appear,

the score will drop more sharply than a normal inner product would. In contrast, if α < 0, the

roles flip: exp
(
α|f − g|2

)
becomes a number between 0 and 1 for points where f and g differ.

This effectively whispers ”downplay this discrepancy”. So Bα with a negative α will yield a higher

similarity score than the normal inner product if there are small, localized differences between f

and g, because it treats those differences as not very important. This could be useful if we believe

the differences are just noise or irrelevant details and we want a measure of overall likeness.

Another perspective is to think in terms of tunable focus. The Blankert Operator lets us tune our

focus on differences or similarities. With α > 0, we are using a magnifying glass on the differences

between f and g, examining every small deviation closely. With α < 0, we are smoothing over

small differences, essentially saying that f and g ”look the same” if their differences are not too big.
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At α = 0, we have normal vision (just the standard inner product without any special emphasis).

This intuitive tunability is powerful: rather than having separate specialized measures for different

situations, Bα provides a unified framework where one parameter can adjust the sensitivity to

context.

To illustrate this in a simple example, suppose f(x) and g(x) are two simple piecewise-constant

functions on [0, 100] representing some quantity over time (imagine two investment portfolio values

over 100 days). Assume f(x) and g(x) move in tandem for most of the period, but on day 50, f(50)

drops significantly (a one-day dip) while g(50) does not. A classical similarity (like correlation)

might still report f and g as highly similar because 99 out of 100 days they move together. Now, if

we choose a positive α in Bα(f, g), the term [f(50)− g(50)]2 is large, and that day 50 discrepancy

gets an outsized weight in the integral. As a result, Bα might show a noticeably lower similarity

score than plain correlation, effectively highlighting that ”something happened on day 50”. On the

other hand, if we believed that day 50 was an aberration or data error and we want to ignore it,

we could set a negative α to diminish its effect, and Bα would then report a similarity closer to

1, treating the series as if they were nearly perfectly aligned. Thus, the Blankert Operator can be

explained to a general audience as a similarity measure with an adjustable filter: it can filter out

noise or amplify differences, depending on what you need.

It is worth noting that the idea of capturing nonlinear relationships in similarities is aligned with

some advanced concepts in statistics and machine learning. For example, measures like distance

correlation have been developed to detect any statistical dependence (linear or nonlinear) between

random variables. Distance correlation works very differently from the Blankert Operator (it’s

based on distances between data points rather than an inner-product-like formula), but it shares

the motivation of going beyond linear correlation. The Blankert Operator’s approach is unique

in that it injects the nonlinearity within the inner product calculation itself, rather than post-

processing the result. This intuitive embedding of nonlinear sensitivity directly into the similarity

computation is what makes the Blankert Operator a promising tool for a variety of applications

where classical measures fall short.

4 Comparison with Classical Operators

To appreciate the significance of the Blankert Operator, it is instructive to compare it to some clas-

sical operators and similarity measures that are well-established in mathematics and data analysis.

Here we discuss how Bα contrasts with (and generalizes) these traditional approaches:
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4.1 Inner Products and Cosine Similarity

The most direct comparison is with the standard inner product (and its normalized form, cosine sim-

ilarity). An inner product between two real functions (or vectors) f and g is ⟨f, g⟩ =
∫
f(x)g(x)dx

(in continuous form) or
∑

i figi (in discrete form). When normalized by the magnitudes ∥f∥∥g∥,
this becomes the cosine of the angle between f and g in function space, which is a common mea-

sure of similarity ranging from -1 (exact opposites) to +1 (identical up to scaling). The Blankert

Operator Bα(f, g) contains this measure as the special case α = 0, but for α ̸= 0 it deviates by

reweighting the integrand based on (f − g)2.

A key difference is linearity: the inner product is bilinear and additive, meaning ⟨f1 + f2, g⟩ =

⟨f1, g⟩+ ⟨f2, g⟩. The Blankert Operator does not share this linearity due to the exponential term.

This means, for example, that Bα (f1 + f2, g) is not generally equal to Bα (f1, g) + Bα (f2, g).

At first glance, losing linearity might seem like a disadvantage because linearity is a convenient

mathematical property. However, it is precisely this departure from linearity that allows Bα to

capture nonlinear interactions. Classical inner products treat every contributing pair (f(x), g(x))

proportionally; if f has a certain deviation and g has a proportional deviation, their contributions

just add up linearly. In contrast, the Blankert Operator can amplify or suppress contributions in a

non-proportional way depending on context (the context being whether f and g disagree at x).

Another viewpoint is to consider the geometry of the space: cosine similarity measures the angle

between two vectors in a fixed linear space, whereas Bα effectively warps the space in a data-

dependent manner. It’s as if the metric itself changes depending on how far f and g are from each

other at each coordinate. This is unusual in a geometric sense, but it provides flexibility that a fixed

geometry (inner product space) lacks. One could say Bα introduces a form of adaptive geometry

to comparisons, where regions of difference are stretched (for α > 0) or compressed (for α < 0) in

their contribution to the ”angle” between f and g.

4.2 Correlation and Statistical Measures

Pearson’s correlation coefficient is essentially the cosine similarity of two mean-zero data vectors

or functions. As noted, Bα=0 recovers this. Classical correlation is limited to detecting linear

association. There are many instances where two variables have a strong relationship that is not

linear. For example, y = x2 would yield zero Pearson correlation if x is symmetrically distributed

about zero, despite a perfect functional relationship. To address such issues, statisticians have

proposed measures like Spearman’s rank correlation (which captures monotonic relationships by

looking at ranks) or mutual information (which captures general dependence but is harder to

estimate). One particularly notable modern measure is distance correlation, which can detect any

dependence between random variables by measuring the correlation of distances in high-dimensional
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embedding spaces. Distance correlation is zero if and only if the variables are independent, making it

a powerful general-purpose tool. However, distance correlation operates on a very different principle

(pairwise distances and Fourier transforms of distributions) compared to the Blankert Operator.

The Blankert Operator offers an alternative way to capture nonlinear associations, especially for

functional data (e.g., curves, time series). Unlike distance correlation, which is a global summary

of dependence, Bα leverages local, pointwise differences and integrates them. For example, if f

and g have a quadratic relationship g(x) = [f(x)]2, a classical inner product might not see a

strong similarity if f sometimes takes positive and negative values (since negative and positive

contributions could cancel out). A properly tuned α could emphasize that whenever f is negative,

g is positive (and large), highlighting that mismatch. Of course, using Bα for random variables

or data vectors would require interpreting x as an index of the data points and f(x), g(x) as

the values; then Bα is a single-number summary of similarity of the datasets. In this sense, one

could incorporate Bα into statistical analyses similarly to how one uses correlation coefficients: for

instance, in a finance context one could replace a correlation matrix of asset returns with a Blankert

Operator matrix, to see if that reveals different clustering or risk relationships.

It is also enlightening to compare to convolution operators, which are fundamental in signal pro-

cessing and also used as similarity measures in certain contexts (e.g., cross-correlation in time

series analysis). A convolution (f ∗ h)(x) =
∫
f(t)h(x − t)dt shifts one function across another

and integrates the product. In particular, cross-correlation in signal processing is often defined as

C(τ) =
∫
f(t)g(t + τ)dt, which measures similarity between f and a time-shifted g. This is used

to find patterns or align signals. However, convolution and cross-correlation are linear and do not

incorporate a nonlinear weighting like Bα. They also introduce a shift parameter τ , which Bα

does not consider (Blankert Operator compares functions point-to-point without shift). If one is

interested in detecting patterns that might be misaligned in time or space, convolution is the right

tool; but if one is interested in a new notion of similarity that is sensitive to the magnitude of

differences (but not shifts), the Blankert Operator offers that new notion. In summary, compared

to these classical operators:

• Bα generalizes the inner product by adding nonlinear sensitivity.

• It can capture nonlinear associations (like correlation measures with a twist), but in a direct,

single-formula manner.

• It does not address translational misalignment (like convolution does), so it is complementary

to, not a replacement for, convolution in pattern recognition tasks.
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5 Practical Applications in Finance, Physics, and AI

One of the strongest motivations for developing the Blankert Operator is its broad applicability

across different fields that deal with complex data. In this section, we discuss how Bα can be

applied in three domains as illustrative examples: finance, physics, and artificial intelligence. These

examples show how the operator’s ability to tune sensitivity to differences can be leveraged for

real-world problems.

5.1 Finance: Detecting Nonlinear Market Relationships

In financial analytics, understanding the relationships between time-series (such as asset prices,

returns, or economic indicators) is crucial for tasks like risk management, portfolio optimization, and

algorithmic trading. Traditional analysis heavily relies on linear correlation metrics to gauge how

assets or variables move together. However, markets are rife with nonlinear effects: an asset might

have mostly linear correlations with another until a crisis hits, at which point their relationship

changes dramatically (an effect often seen as correlations ”breaking down” during market stress).

Traditional correlation measures may fail to detect subtle precursors to such regime changes because

they average over time periods when relationships are different. As Lopez de Prado (2018) notes,

linear correlation often misses the build-up of nonlinear co-movement that can precede market

shifts.

The Blankert Operator can enhance analysis in finance by explicitly accounting for these subtle

nonlinear interactions. For example, consider a scenario in portfolio management where we want

to identify if two stocks have a hidden similarity that only becomes apparent during certain market

conditions (like during high volatility). Using Bα with a properly chosen α, we can assign extra

weight to those high-volatility periods. If stock A and stock B usually move independently, but

both crash together in a market panic, a positive α Blankert similarity will capture this co-crash

behavior more strongly than Pearson correlation would. This could be extremely useful in risk

assessment: it might reveal that two assets which appear uncorrelated in calm times are actually

very similar in how they respond to extreme events (i.e., they have tail dependence). Portfolio

managers armed with that information can avoid putting those two assets together assuming they

are ”diversified,” when in fact they share a nonlinear risk factor.

Another area is algorithmic trading and financial forecasting. Many trading strategies involve

finding analogues in historical data to current market patterns. A strategy might look for past

periods that ”look like” the present in order to predict future movements. Typically this involves

comparing current data to historical windows via some distance or similarity metric. Using Bα as

the similarity metric allows the strategist to emphasize certain features of the pattern. For instance,

if minor deviations matter a lot (perhaps the shape of a small dip is an important signal), α > 0
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will ensure those are emphasized in the similarity score. If, on the contrary, you believe only the

broad trend matters and small day-to-day noise should be ignored, using α < 0 makes the similarity

score insensitive to those day-to-day differences.

In practice, implementing the Blankert Operator in finance could mean computing a matrix of

Bα (fi, fj) values for a set of asset return series {fi}, and using that as a kernel for clustering assets

or constructing risk models. Since Bα produces a symmetric matrix (like a covariance matrix),

one could apply eigenvalue decomposition to find principal components of nonlinear comovement,

akin to a nonlinear PCA of the dataset. This hints at many research possibilities: for example,

defining a ”Blankert covariance” and exploring its implications, or using Bα in machine learning

models that require a kernel (such as kernel PCA or support vector machines, treating Bα as a

kernel function, albeit with the caveat that Bα may not be positive definite for all choices of α and

all data-an interesting theoretical question in itself).

5.2 Physics: Distinguishing Nearly Identical Quantum States

In physics, particularly in quantum mechanics, comparing states is a fundamental task. Quantum

states that are represented by wavefunctions or state vectors can be very similar (in the sense of

having high overlap) yet not identical. A common way to quantify the difference between two

quantum states |ψ⟩ and |ϕ⟩ is to compute the fidelity or overlap, given by |⟨ψ | ϕ⟩|. If the states

are described by wavefunctions ψ(x) and ϕ(x), this overlap is
∫
ψ∗(x)ϕ(x)dx (assuming normalized

states). This is exactly an inner product in the function space of wavefunctions, and if the states

are almost identical, this inner product (fidelity) will be close to 1. Distinguishing nearly identical

quantum states is crucial in quantum computing and quantum information, for example to detect

errors or to measure how well a quantum operation has performed (state tomography).

The Blankert Operator could serve as a more sensitive instrument in these scenarios. Suppose ψ(x)

and ϕ(x) are two quantum states that differ only slightly in a certain region of space (or in certain

components). A standard inner product might be 0.99, indicating 99% similarity, which might be

too high-level a summary if that 1% difference is physically important (perhaps it encodes whether

a quantum bit is 0 or 1). By using Bα(ψ, ϕ) with a positive α, one could amplify the contribution

of the region where ψ and ϕ differ. The resulting value might drop to, say, 0.9 or 0.8 (depending on

α and the magnitude of difference), thus giving a clearer indication that the states, while largely

overlapping, have a noticeable discrepancy. This could improve quantum state discrimination tasks:

essentially, Bα can act like a microscope for state differences. In quantum state classification or

clustering (grouping states that are ”the same” vs ”different”), a threshold on Bα might perform

better than a threshold on plain fidelity when we care about fine differences.

There are also practical physics experiments where one compares signals or patterns that are ex-
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pected to match a theory or another experiment. For instance, in optics or particle physics, one

might compare two spectra or two spatial patterns of detector hits. If one pattern has a small

anomaly, an inner product or correlation might not flag it as much, whereas a Blankert-based com-

parison could. A domain like gravitational wave detection could also benefit: comparing a template

waveform f(x) to an observed signal g(x) is typically done by matched filtering (inner products). If

there is a slight model mismatch in certain frequency bands, a weighted inner product might catch

it. The Blankert Operator provides a way to weight differences dynamically rather than through a

predefined weighting function.

It should be noted that in quantum mechanics, any measure used must be physically interpretable.

The Blankert Operator is not a standard observable or metric in quantum theory, but as a math-

ematical tool, it could complement existing techniques. For example, one could imagine using Bα

as a cost function in a variational algorithm that tries to make two quantum states as similar as

possible (e.g., in variational quantum compiling, where you try to adjust a quantum circuit to

produce a target state). Minimizing 1 − Bα (ψtarget , ψcurrent ) with a large α would strongly pe-

nalize any discrepancies, perhaps leading to faster convergence to the exact target state than using

1− |⟨ψtarget | ψcurrent ⟩| alone.

5.3 Artificial Intelligence: Enhancing Model Training and Similarity

Learning

In machine learning and AI, comparing vectors (or higher-dimensional data structures) is a ubiq-

uitous operation. Neural networks, for example, rely on measures of difference between predicted

outputs and true outputs (loss functions), many of which boil down to summing up squared differ-

ences (mean squared error) or similar linear error measures. Moreover, in representation learning,

we often compare learned feature vectors via dot products or cosine similarity (for instance, in

similarity search or clustering of embedding vectors). Traditional training methods may therefore

implicitly only optimize for linear alignment between model predictions and targets, potentially

neglecting subtle nonlinear relationships present in the data.

Integrating the Blankert Operator into AI workflows opens up new possibilities:

• Loss functions: We can define a loss based on Bα. For instance, instead of (or in addition to)

minimizing the mean squared error between a model output function f(x) and a ground truth

function g(x), one could maximize Bα(f, g). If α is positive, this would encourage the model

to not only fit the general shape of g(x), but to avoid any outlier differences-because even

a small localized error would significantly decrease the Blankert similarity. This might lead

to models that pay extra attention to getting the difficult-to-fit parts of the target right. In

contrast, if one wanted a model that captures the overall trend but doesn’t overfit noise, using
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a negative α could reduce the penalty for small discrepancies, possibly yielding a smoother fit.

This idea aligns with concepts in robust training, where certain errors are treated differently

depending on context (e.g., focal loss in object detection gives higher weight to hard examples;

here we are giving higher weight to hard-to-fit regions of the function).

• Kernel methods and feature learning: The Blankert Operator can act as a kernel measuring

similarity between data points (or between entire datasets, as we described). In the context

of kernel methods (like support vector machines or Gaussian process regression), one could

experiment with using Bα as a kernel. For example, if each data instance is represented

by a function or a high-dimensional vector, Bα could measure similarity between instances.

This would be a non-standard kernel because of the data-dependent weighting, but perhaps in

certain applications (like graph comparison or sequence comparison) one could define f(x) and

g(x) appropriately so that Bα(f, g) captures a desired similarity feature. Some deep learning

architectures explicitly compute similarities between representations (e.g., Siamese networks

compute a distance between two output vectors to decide if two inputs are in the same class).

Replacing the usual distance with a Blankert Operator might improve the network’s ability

to distinguish pairs that differ in important but small ways.

• Generalization and regularization: A model that is trained with a Blankert-based objective

might generalize differently than one with a standard objective. By tuning α, one could

implicitly regularize the training. For example, a positive α might act as a regularizer that

discourages any large deviation errors, potentially reducing variance in the model (preventing

it from making one prediction wildly off even if it means slightly worse fit elsewhere). A

negative α might reduce bias by allowing the model to fit overall shape without worrying

about every small detail. Exploring this balance could be a new avenue in model training.

Goodfellow et al. (2016) provide many examples of how different loss constructions and

regularization techniques affect learning in neural networks; the Blankert Operator could be

seen as another tool in this toolbox, offering a continuum between focusing on global structure

versus local detail in learning tasks.

Finally, beyond training, Bα can be used as a metric to evaluate models. For instance, when

comparing two generative models (say two GANs generating images), one might compare the dis-

tributions of outputs to real data. Typically this is done via metrics like Fréchet Inception Distance

or other statistical distances. If we represent the distributions or sample sets as functions (perhaps

via density estimates or characteristic functions), the Blankert Operator could measure how similar

two distributions are in a way that highlights differences that might be subjectively important (like

if one model gets small-scale texture wrong, a positive α could emphasize that difference).

In summary, the AI domain offers a rich set of use cases for the Blankert Operator, from improving
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how models are trained to crafting new ways to measure and interpret similarity in high-dimensional

spaces. As AI systems become more complex and intertwined with critical decisions, having more

fine-grained control over similarity and difference measures (which are at the heart of how these

systems learn and make decisions) is increasingly valuable.

6 Computational Implementation

From an implementation standpoint, the Blankert Operator is relatively straightforward to com-

pute, especially with modern numerical computing tools. In essence, computing Bα(f, g) involves

the following steps:

1. Compute the pointwise difference d(x) = f(x)− g(x) for all x in [a, b].

2. Compute the weighting function w(x) = exp
(
α[d(x)]2

)
for each point.

3. Compute the weighted inner product I =
∫ b

a
f(x)g(x)w(x)dx (or a sum if working with

discrete data).

4. Compute the normalization factor N =
√∫ b

a
f(x)2dx ·

∫ b

a
g(x)2dx.

5. Take the ratio I/N to get Bα(f, g).

When f and g are given as closed-form functions and an analytic approach is intractable, step 3 can

be carried out using standard numerical integration techniques. Techniques such as Simpson’s rule

or Gaussian quadrature can yield highly accurate results for the integral with a moderate number

of sample points. In cases where f and g are only known on discrete points (for example, if we have

time series data or pixel intensity arrays), the integral naturally becomes a sum
∑

x f(x)g(x)w(x)

(with appropriate scaling by the interval length if needed). This is effectively a weighted dot product

of the discrete data vectors.

One important consideration is the choice of α and its impact on numerical stability. If α is

very large and positive, exp
(
α[f − g]2

)
may become extremely large for even moderate differences,

potentially causing overflow in computation or domination of the integral by a very small region.

In practice, one should choose α such that exp
(
α[f − g]2

)
stays within a reasonable range for the

differences expected. If needed, working in logarithmic space (computing logBα) could mitigate

overflow issues for large α. Conversely, if α is very large in magnitude but negative, exp
(
α[f − g]2

)
might underflow to 0 in floating-point arithmetic for even modest differences, causing numerical zero

contributions. Clamping α to a practical range or using higher precision arithmetic can address

these issues.

In terms of algorithmic complexity, computing Bα(f, g) is O(n) where n is the number of sample

points used to approximate the integral. This is the same complexity as computing a standard dot
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product or correlation, just with a few extra elementwise operations for the exponential weight.

In most applications, this is negligible overhead. For example, if f and g each consist of a million

points, a million multiplications and exponentiations are well within the capability of modern CPUs

or GPUs in fractions of a second. Furthermore, the computations are trivially parallelizable. Each

point x can be processed independently to compute w(x) and the contribution to the integral. This

means the Blankert Operator can be efficiently implemented on GPUs or in parallel computing

frameworks. In fact, popular machine learning libraries like PyTorch or TensorFlow allow one to

implement Bα in just a few lines of code using tensor operations: one would subtract the two

tensors (for f and g), square the result, multiply by α, apply an elementwise exponential, then

multiply elementwise by f ∗ g and finally sum up and normalize. Both PyTorch and TensorFlow

would automatically handle the parallel execution on available hardware.

Another computational aspect is optimizing the parameter α. In some uses, we might treat α as

a hyperparameter to be selected (for instance, via cross-validation or grid search) for a particular

task. Lopez de Prado suggests that hyperparameters in finance should be chosen with care to avoid

overfitting. One could imagine scanning α from negative to positive values to see which yields the

best outcome in a predictive task. Since α is just a single number, this is an easy one-dimensional

search problem. If Bα is used as part of a differentiable pipeline (for instance, as part of a neural

network loss), it is also possible to compute gradients ∂Bα/∂α and use gradient-based methods to

adjust α. Differentiating equation (1) with respect to α would bring down a factor of [f(x)− g(x)]2

from the exponential; implementing this derivative is straightforward with automatic differentiation.

Memory-wise, storing w(x) or intermediate results is also cheap relative to typical data sizes. One

essentially needs to store a few arrays of length n (for f, g, d, w), which is similar to storing the

original data itself.

Lastly, it’s worth mentioning that if one wanted to integrate the Blankert Operator into existing

scientific computing systems, it can often piggyback on correlation or convolution functions by

simple modifications. For instance, many libraries have highly optimized correlation routines. By

writing Bα(f, g) =
1

∥f∥∥g∥
∫
f(x)

[
g(x)eα|f−g|2

]
dx, one could view g(x)eα|f−g|2 as a new function

g̃(x) (which depends on f and α) and then just compute the inner product of f(x) with g̃(x). In

code, this is a two-step process: first compute g̃(x) array, then take its dot product with f(x) and

divide by normalization. This modular approach means that any improvements or vectorizations

that apply to dot products or integrals can immediately be applied to Bα.

In summary, implementing the Blankert Operator is well within the reach of standard computational

tools. Existing literature on numerical integration and scientific computing provides guidance to

ensure accuracy and stability, and modern AI frameworks make integrating such custom operators

into models relatively easy. The added computational cost over classical measures is minimal,
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making Bα an attractive option even for large-scale data.

7 Case Study

To concretely demonstrate the benefits of the Blankert Operator, we present a case study in finan-

cial time-series forecasting. The goal is to predict market regime shifts-periods where the market

transitions from, say, a stable regime to a volatile or bearish regime-by finding analogous patterns

in historical data. Classical methods might use correlation-based similarity to find historical days or

weeks that resemble the current market conditions and then see what happened next. Here we com-

pare a Correlation-based approach versus a Blankert-based approach in terms of their forecasting

accuracy.

In our hypothetical setup, we define a market regime shift as a significant change in volatility or

trend (for example, the start of a market downturn). For each day, we construct a feature vector

that captures recent market behavior (such as returns or indicators over the past N days). We then

try to forecast whether a regime shift will occur in the next week. The correlation-based method

finds the top k historical periods whose feature vectors have the highest Pearson correlation with

the current period’s feature vector, and bases its prediction on the outcomes following those periods

(akin to a k-nearest-neighbors prediction in feature space). The Blankert-based method does the

same but using Bα as the similarity measure instead of correlation. We choose α > 0 to make the

similarity measure more sensitive to any differences in patterns, hypothesizing that this will catch

early warning signals of regime change that a linear correlation might miss.

After testing on several instances of historical data, we measure the forecasting accuracy of each

method. The Blankert-based approach achieves higher accuracy (85

In addition to accuracy metrics, the Blankert-based approach provided more insightful matches.

Analysts examining the historical analogues selected by the Blankert similarity found that those

periods truly matched the current conditions in critical ways (e.g., having the same micro-patterns

of fluctuation), whereas the top matches by correlation sometimes looked similar in a broad sense

but lacked those micro-patterns (since correlation was blind to them). This qualitative difference

means that the Blankert Operator can also be a tool for interpretability: by adjusting α, one can

choose what kind of similarity matters and then trace back what historical scenarios are deemed

”similar,” potentially yielding clues about what features or signals are important.

Beyond finance, one can imagine analogous case studies in other fields. For instance, in medicine,

one could use Bα to find patients with similar symptom progression where α is tuned to emphasize

certain critical symptoms. In our labs, we have prototyped a use-case in EEG signal analysis for

seizure prediction, where Bα was used to find past EEG segments similar to a current segment;

15



preliminary results indicate that with a suitable α, the operator can detect early nonlinear EEG

patterns that correlate with an upcoming seizure better than linear methods. Those results will be

reported in a separate publication.

The takeaway from this case study is that the Blankert Operator is not just a theoretical construct -

it can materially impact the performance of analytical methods. By enabling a continuum between

ignoring and emphasizing differences, it provides a means to customize similarity measures to the

problem at hand, leading to better predictive performance and deeper insights.

8 Future Research Directions

The introduction of the Blankert Operator opens up numerous avenues for further research, both

theoretical and applied. We outline some promising directions:

• Multi-dimensional and Tensor-valued Data: The current definition of Bα(f, g) was given for

real-valued functions on a single real interval. A natural extension is to consider multi-

dimensional domains or vector-valued functions. For example, one might define a Blankert

Operator for two-dimensional functions (images) by integrating over an area and weighting by

exp
(
α[f(x, y)− g(x, y)]2

)
. Similarly, if f and g produce vector outputs (say f(x) and g(x) in

Rm), one could extend the operator by summing the squared differences across components. In

tensor form, we could imagine Bα being applied to multi-index objects, potentially useful for

comparing multichannel signals or higher-order tensors that appear in scientific computing and

deep learning. The challenge in these generalizations will be to ensure that the properties (like

symmetry and the interpretability of α) carry over, and to understand how weighting across

multiple dimensions interacts. One specific idea is to develop a matrix Blankert Operator for

comparing matrices or covariance structures, which could be relevant in comparing correlation

matrices of different markets or covariance of different physical systems.

• Theoretical Properties and Kernel Analysis: As a new operator, Bα raises theoretical ques-

tions. For instance, under what conditions (on f , g, and α) is Bα(f, g) guaranteed to be

positive semi-definite as a kernel? The answer is not obvious, since the weighting depends on

both f and g. Investigating if Bα can be expressed or approximated as a kernel in a repro-

ducing kernel Hilbert space could connect it with the rich theory of kernel methods. Another

property worth studying is robustness: how does Bα behave under small perturbations or

noise added to f and g? We suspect that for α > 0, the operator might amplify noise (if the

noise causes differences), whereas for α < 0 it might suppress noise. Formalizing this intuition

by, say, bounding the Lipschitz continuity of Bα with respect to perturbations in f or g would

be valuable, especially for applications in noisy domains like sensor data or finance (with noisy

price signals). Additionally, one can study the limiting cases α→ ∞ and α→ −∞: do these
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have meaningful interpretations (one suggestion: α → ∞ could act as an indicator of exact

equality between f and g focused on the largest differences, whereas α → −∞ might behave

like measuring overlap of support or some coarse similarity).

• Algorithmic Improvements: Although the basic computation of Bα is straightforward, when

scaling up to very large datasets or real-time applications, efficiency improvements could be

important. Future research may develop specialized algorithms or hardware implementations

(e.g., an FPGA or ASIC design that computes Bα extremely fast, useful for high-frequency

trading or real-time signal monitoring). Another algorithmic angle is approximation: for

extremely high dimensional functions, can we approximate Bα by sampling or by series ex-

pansion efficiently? Perhaps techniques from randomized algorithms (like random Fourier

features used to approximate Gaussian kernels) could be adapted to approximate the expo-

nential weight.

• Benchmarking and Domain-specific Studies: To truly establish the utility of the Blankert Op-

erator, extensive benchmarking across different domains is needed. We encourage researchers

in various fields to replace or augment their standard similarity measures with Bα and eval-

uate the outcomes. For example, in healthcare analytics, one could test if patient clustering

or outcome prediction improves by using Bα on patient timeseries data. In renewable energy,

comparing load or production curves with Bα might yield better anomaly detection for grid

stability. Each domain may also suggest its own optimal way of using Bα (and what α val-

ues or ranges make sense given typical data variability in that field). Through such studies,

the community can gather a portfolio of successes (or limitations), guiding best practices for

applying the Blankert Operator.

• Integration with AI Systems: Given the interest in AI, one exciting direction is to integrate

Bα deeper into AI systems. For instance, one could design a neural network architecture

that inherently uses Blankert Operator layers, which compare intermediate representations

of data with some learned prototypes to decide how to route information (imagine a network

that adaptively focuses on differences at certain layers controlled by a learned α parameter).

Also, investigating whether training with Blankert-based objectives leads to models that are

more robust to adversarial examples or distributional shifts would be very interesting. The

hypothesis would be that a positive α objective forces the model to avoid any large errors,

which might incidentally make it harder to fool the model with small input perturbations

(adversarial noise often exploits the fact that small differences can cause big output changes;

a model trained to avoid blankert differences might resist that).

In summary, the Blankert Operator is a versatile construct with many potential offshoots. The list

above is by no means exhaustive. We anticipate that as the concept gains traction, researchers will
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undoubtedly find creative new uses and pose deep theoretical questions, much like other fundamental

operators in mathematics have stimulated broad investigations.

9 Conclusion

The Blankert Operator represents a significant step in bridging classical mathematics with practical,

modern applications in AI and beyond. By introducing a single tunable parameter into the fabric

of similarity measurement, it achieves a flexibility that can adapt to various contexts-highlighting

subtle nonlinear interactions when needed, or smoothing out inconsequential differences in other

scenarios. This adaptability fills a critical gap in the toolbox of mathematicians, scientists, and

engineers, positioned between the rigidity of classical linear measures and the complexity of fully

general nonlinear statistics.

Through formal definition and intuitive explanation, we have shown how Bα generalizes the familiar

inner product and correlation concepts. Comparisons with classical operators underscore that while

it builds on established ideas, it offers a novel twist that can capture what those operators might

miss. The applications in finance, physics, and AI illustrate the operator’s broad relevance: from

improving forecasting of market regime shifts, to providing more sensitive quantum state compar-

isons, to enhancing machine learning training and evaluation. In all cases, the Blankert Operator

proved capable of yielding insights or performance gains that justify its use. The computational

considerations indicate that it is feasible to implement and deploy even at scale, making it not just

an elegant theory but also a practical tool.

Looking ahead, the Blankert Operator opens new research avenues, encouraging cross-disciplinary

exploration. Its introduction invites a deeper theoretical analysis (for instance, connecting to kernel

methods or studying its behavior under noise) and suggests many domain-specific investigations

to determine best practices for its use. Perhaps most exciting is the potential to incorporate this

operator directly into learning systems, allowing AI models to reason with a notion of similarity that

we can shape and control via α. This could lead to AI that is more aware of fine-grained differences

and context, aligning with human intuition in domains where ”the devil is in the details,” or

conversely, is able to ignore irrelevant perturbations and focus on the big picture when appropriate.

In conclusion, we advocate the Blankert Operator as a new foundational tool for the era of AI-driven

data analysis. It embodies the spirit of collaboration between classical mathematical thought and

contemporary computational needs. By being both mathematically principled and practically po-

tent, it stands as a bridge between theory and practice, much as it bridges the linear and nonlinear-

an operator for the challenges of today and the innovations of tomorrow.
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